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Abstract
β-FeSi2 layers were formed on Si by means of high-dose Fe+ implantation into
Si(100) at 300 K followed by nanosecond pulsed ion-beam treatment (PIBT) of
the implanted layers. It is shown that PIBT leads to the formation of a mixture
of two phases (FeSi and β-FeSi2) with a strained state of the silicide crystal
lattice. Subsequent short-duration thermal annealing at 800 ◦C for 20 min
results in a decrease of the lattice strains and in the complete transformation
of the FeSi phase into the β-FeSi2 phase, with the production of a highly
textured layer with the [110] orientation. The results of the optical absorption
measurements indicate the formation of a direct band gap structure with the
optical gap Eg ∼ 0.83 eV and the Urbach tail width E0 ∼ 0.22 eV.

1. Introduction

Formation of Si-based structures emitting in the visible and near-infrared (IR) spectral region
has attracted substantial interest for the last 10–15 years. One of the main approaches to the
fabrication of structures emitting at wavelengths λ ∼ 1.55 µm is that of forming β-FeSi2 layers.
β-FeSi2 is the semiconducting phase of the Fe–Si system, with orthorhombic structure and a
direct band gap Eg ∼ 0.85 eV [1–6]. This gap value corresponds to the optical wavelength
λ ∼ 1.45 µm which is close to the technologically important wavelength λ ∼ 1.55 µm
corresponding to the silicon transparency region and the absorption minimum of silica optical
fibres. This allows one to create optoelectronic devices in the near-IR region integrated in
silicon microelectronic device technology.

In order to form β-FeSi2 layers, an ion-beam synthesis technique, i.e. high-dose Fe+

implantation into Si with in situ heating [7, 8] or high-temperature and long-duration annealing
(T = 800–900 ◦C, t ∼ 20 h) [9–13], is widely used. However, during such thermal annealing
a substantial degree of diffusion of iron atoms in the basic material takes place due to the large
diffusion coefficient of Fe in Si at high temperatures (D ∼ 5 × 10−6 cm2 s−1 at T = 1000 ◦C
[14]). This can give rise to severe device yield and reliability problems [15].

Using nanosecond pulsed treatments by laser, electron and ion beams allows one to
overcome this drawback by achieving local (∼1 µm) and short-duration (<1 µs) heating
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of the material. There have been many publications on pulsed-laser treatment of thin metal
films on Si [16, 17]. However, they are all concerned with the formation of metal silicides for
interconnections and ohmic and Schottky barrier contacts.

In order to synthesize semiconducting silicide β-FeSi2 for optoelectronic applications,
laser treatment of Fe films on Si is used [18], but there have been no reports on pulsed treatment
of Fe+-implanted Si. In this work, for the first time pulsed ion-beam treatment (PIBT) of Fe+-
implanted Si is used to form submicron β-FeSi2 layers. A characteristic feature of PIBT is
a more uniform depth distribution of energy losses in the material compared to that obtained
under laser treatment, resulting in less surface overheating and disruption [19]. High rates
of heating, melting and recrystallization (∼107–109 K s−1) lead to the formation of epitaxial,
defect-free and highly doped Si layers [20–22].

2. Experimental procedure

Single-crystal (100) Cz-Si wafers with an n-type resistivity of 1–4 � cm were implanted with
Fe+ ions at room temperature (RT) at an energy of 40 keV and dose of 1.8 × 1017 cm−2 (with
an ion current density of 5 µA cm−2). After the implantation, some of the implanted samples
were subjected to PIBT using a TEMP accelerator [23] (C+: 80%; H+: 20%; E = 300 keV;
τ = 50 ns; j ∼ 50 A cm−2; W ∼ 0.75 J cm−2) with the total dose per pulse not exceeding
1014 cm−2. The rest of the implanted samples were subjected to thermal annealing (TA) in a
quartz furnace with ambient nitrogen at 800 ◦C for 20 min, to produce results for comparison.
The crystal structure of the layers formed was studied by the glancing-x-ray diffraction
technique (GXRD) using Fe Kα radiation (λ = 1.9373 Å). The azimuth dependencies of the
most intense diffraction peaks were measured by fixing the detector at the appropriate positions
and performing azimuth angle scans from 0◦ to 360◦ with a step of 3◦. IR spectroscopy in
the reflection and transmission modes was employed to determine the band-gap energy. The
measurements were performed at RT over the spectral range λ = 1100–2000 nm.

3. Results and discussion

3.1. X-ray characterization

After ion implantation, no reflections are present in the GXRD pattern (not shown), indicating
that complete amorphization of the implanted layer has taken place. Figure 1 shows GXRD
patterns of samples subjected to various treatment regimes after ion implantation. From
figure 1(a) one can see that after PIBT two phases are mixed: the metallic FeSi and the
semiconducting β-FeSi2. The most intense peak in the spectrum corresponds to the Bragg
reflections from the (220)/(202) planes of the β-FeSi2 phase. The position of this peak
(2θ = 36.2◦) differs from the table value (2θ = 36.9◦). The disilicide crystal lattice
deformation estimated from the difference between the interplane distances in the strained
and unstrained states is ε ∼ 2%. Similar behaviour for other diffraction peaks present in
the spectrum is observed. The difference observed in the positions of Bragg reflections can
be explained by a strained state of the silicide crystal lattice, which is caused by the rapid
liquid-phase crystallization after the PIBT.

In order to remove the lattice strains and to transform the residual FeSi phase into β-FeSi2,
a short-duration TA (800 ◦C, 20 min) was performed. The GXRD pattern after the additional
TA is shown in figure 1(b). One can see a substantial increase of (220)/(202) β-FeSi2 peak
intensity and its shift to the value 2θ = 36.9◦, indicating that the strains in the silicide lattice
have been removed. Moreover, the Bragg reflections of the FeSi phase disappear as well. The
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Figure 1. GXRD patterns for implanted Si (40 keV/1.8 × 1017 Fe+ cm−2): (a) after PIBT
(0.75 J cm−2); (b) after PIBT and additional TA (800 ◦C, 20 min); (c) after TA only (800 ◦C,
20 min). In the inset, the azimuth dependence of the β-FeSi2 (220)/(202) diffraction peak is
shown.

ratio of the integrated intensities I220:I422 is about 8.7 whereas for randomly oriented β-FeSi2
powders this ratio is about 1.25. This indicates that the preferred grain orientation (texture) is
present. In the inset of figure 1(b) the azimuth dependence of the (220)/(202) peak is shown,
indicating the presence of the high degree of texture with [110] orientation on Si(100). For
comparison, figure 1(c) shows the GXRD pattern of an implanted sample after TA (800 ◦C,
20 min) only. In this case the β-FeSi2 phase is also observed, but only with the ratio of
I220:I422 = 3.6 and with a very weak texture (not shown).

3.2. Optical characterization

Figure 2 shows reflectance (R) and transmittance (T ) spectra of an implanted sample after PIBT
and additional TA in the spectral region corresponding to the silicon substrate transparency.
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Figure 2. Transmittance and reflectance spectra of implanted Si (40 keV/1.8 × 1017 Fe+ cm−2)
after PIBT (0.75 J cm−2) with additional TA (800 ◦C, 20 min).

The dependence of the absorption coefficient α on the photon energy E for the direct interband
transitions is given by [24]

α = A(E − Eg)
1/2 (1)

where A is a constant associated with specific features of the band structure and Eg is the
magnitude of the direct band gap. The absorption exponent αd (d is the layer thickness) is
found according to the equation

αd = ln

(
1 − R

T

)
(2)

and from the dependence of (αd)2 on E one can determine the Eg-value by extrapolating the
straight line down to the intersection with the E-axis (figure 3). The Eg-value (∼0.83 eV) is
close to those for ion-beam-synthesized β-FeSi2 given in the literature [4–6].

A substantial subgap absorption (Urbach tail) exists below the fundamental absorption
edge. It appears due to the light absorption by the silicide layer defects (defect absorption)
and follows the empirical rule [25]

α = α0 exp

(
E − Eg

E0

)
(3)

where α0 is a constant and E0 is the inverse logarithmic slope of the Urbach tail. The parameter
E0 characterizes the Urbach tail width and indicates that both static structural and dynamic
thermal disorders contribute to the absorption below the direct band gap. At RT, structural
disorder due to the grain boundaries and their related defects has been found to make the
dominant contribution to the Urbach tail [4]. The result of fitting the defect absorption to
equation (3) at E < Eg is shown in the inset of figure 3 by the solid line. The best-fit E0-value
is found to be ∼0.22 eV for an implanted sample subjected to PIBT and TA. The comparison
of our result with literature data indicates a sufficiently high defect content in the annealed
silicide layers (E0 ∼ 0.05 eV after TA at 900 ◦C for 18 h [26]). It is obvious that to decrease
the E0-value it is necessary to find optimal regimes of ion implantation, PIBT and TA.
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Figure 3. The square of the absorption exponent versus the photon energy for implanted Si after
PIBT (0.75 J cm−2) with additional TA (800 ◦C, 20 min). The solid line shows the extrapolation of
the absorption data to determine the Eg-value. In the inset the spectral dependence of the absorption
coefficient is shown on a log scale. The solid line is obtained from the fit to the measured data
using the Urbach rule.

4. Conclusions

We have shown that PIBT of Fe+-implanted Si leads to the formation of a mixture of two
phases (FeSi and β-FeSi2) with a strained state of the silicide crystal lattice. Subsequent
short-duration TA (800 ◦C, 20 min) results in a decrease of the lattice strains and the complete
transformation of the FeSi phase into β-FeSi2, with the production of a highly textured layer
with [110] orientation on Si(100). The results of the optical absorption measurements indicate
the formation of a direct band gap structure with the optical gap Eg ∼ 0.83 eV and with the
Urbach tail width E0 ∼ 0.22 eV.
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